
Bringing link-time optimization 
to the embedded world: 
(Thin)LTO with Linker Scripts

Qualcomm Innovation Center, Inc.

Tobias Edler von Koch,  Sergei Larin,

Shankar Easwaran,  Hemant Kulkarni



2

What is a linker script?

A linker script allows 

the user to describe 

how sections in the 

input files should be 

mapped into an

output file.

The mapping between 

input and output 

sections is expressed 

using patterns

Linker scripts facilitate 

key features of 

system-level software

The patterns are matched against 

input file paths and input section 

names. 

Some examples are

• Tightly Coupled Memories (TCM)

• RAM / ROM placement

• Compression



3

Agenda

Motivating 

Example

1 2
What we need 

to address

4
Summary

3
Implementation



4

Motivating Example
A typical application with a linker script, compiled without LTO

MyApp.o ROM.o

Output.elf

Linker

Script.t



5

Motivating Example
Section layout by the linker

.text:

main

someFun

.data

myVar

.text:

specialFun

SECTIONS {

.rom : { ROM.o(.text) }

.text : { *(.text) }

.data : { *(.data) }

}

MyApp.o

ROM.o

.rom:

specialFun

.text:

main

someFun

.data:

myVar

Output.elf

L

i

n

k

e

r

Script.t



6

Motivating Example
With LTO enabled

Output.elf

Script.t
/tmp/llvm-lto.o

LTO

Linker

MyApp.o ROM.o



7

Motivating Example
Section layout with LTO enabled

.text:

main

someFun

specialFun

.data

myVar

SECTIONS {

.rom : { ROM.o(.text) }

.text : { *(.text) }

.data : { *(.data) }

}

/tmp/llvm-lto.o

.rom:

<empty>

.text:

main

someFun

specialFun

.data:

myVar

Output.elf

L

i

n

k

e

r

Script.t



8

Motivating Example
Comparison of output

.text:

main

someFun

specialFun

.data:

myvar

…

Output.elf

.rom:

specialFun

.text:

main

someFun

.data:

myvar

…

Output.elf

Non-LTO LTO



9

Motivating Example
Comparison of output

.text:

main

someFun

specialFun

.data:

myvar

…

Output.elf

.rom:

specialFun

.text:

main

someFun

.data:

myvar

…

Output.elf

Non-LTO LTO



10

Agenda

Motivating 

Example

1 2
What we need 

to address

4
Summary

3
Implementation



11

Why do we get this wrong?

Two problems at the 

heart of this issue:

We do not track the 

origin of symbols 

during LTO

We apply 

transformations 

across output sections

The linker can’t apply path-based 

linker script rules without knowing 

the ‘real’ origin of a symbol

This can lead to correctness and 

performance problems, e.g.

• Constant merging into section not 

loaded at time of access

• Inlining from “fast” into “slow” 

memory



”LTO doesn't know about linker scripts 
and their effects (see other related 
bug reports).

That means basically a Won’t Fix…”

— GCC Bug #65252



13

Agenda

Motivating 

Example

1 2
What we need 

to address

4
Summary

3
Implementation



14

(Thin)LTO 
Optimization

(Thin)LTO 
Code Gen

Compilation 
to Bitcode

Symbol
Resolution

Linking



15

Step 1: Compilation of individual files

In addition to producing bitcode,

• Clang invokes backend to obtain a 

section name for each symbol

• Adds this as “linker_input_section” 

attribute to each GlobalObject, and

• Stores it as a field in the IR Symbol 

Table of the bitcode file

define void @specialFun()      
“linker_input_section”=“.text” #0 { … }

define void @specialFun() #0 { … }

IR Symbol Table

Symbol Section ...

specialFun .text

…

clang –flto –c –o ROM.o ROM.c



16

(Thin)LTO 
Optimization

(Thin)LTO 
Code Gen

Compilation 
to Bitcode

Symbol
Resolution

Linking



17

Step 2: Symbol resolution in the linker

Linker iterates over IR symbol table and 

matches symbols to linker script rules

• With input section names in the symbol 

table, this is just like reading an object file

• The linker determines an output section for 

each symbol – including locals - and 

communicates it to LTO along with the 

existing SymbolResolution information

• We set the Module Id to a string known to 

the linker e.g. “library.a(filename.o)”

Linker

IR Symbol Table

SymbolResolution

Symbol Flags Section

specialFun p, x .rom

…

SECTIONS {

.rom : { ROM.o(.text) }

.text : { *(.text) }

.data : { *(.data) }

}

Script.t

Symbol Section

specialFun .text

…

Linker Magic



18

(Thin)LTO 
Optimization

(Thin)LTO 
Code Gen

Compilation 
to Bitcode

Symbol
Resolution

Linking



19

Step 3: (Thin)LTO Optimization

Set additional attributes based on information 

provided by linker, then apply optimizations as 

usual

• For Regular LTO, set attributes before 

merging

• For ThinLTO, set attributes before & after 

import

• Some optimizations are modified to become 

aware of attributes as needed (constant 

merging, inlining, function merging, 

outlining…)

define void @specialFun()      
“linker_input_section”=“.text”
“linker_output_section”=“.rom”
“module_id”=“(ROM.o)” #0 { … }

define void @specialFun()      
“linker_input_section”=“.text” #0 { … }

(Thin)LTO Optimization



20

(Thin)LTO 
Optimization

(Thin)LTO 
Code Gen

Compilation 
to Bitcode

Symbol
Resolution

Linking



21

Step 4: (Thin)LTO Code Generation

Emit symbols with linker script attributes to 

‘augmented’ section names understood by the 

linker

The ‘augmented’ section name encodes

◦ the linker_input_section, and

◦ the module_id

CodeGen

.section “.text^^(ROM.o)”,”ax”,@progbits

.globl specialFun
…

define void @specialFun()      
“linker_input_section”=“.text”
“linker_output_section”=“.rom”
“module_id”=“(ROM.o)” #0 { … }



22

(Thin)LTO 
Optimization

(Thin)LTO 
Code Gen

Compilation 
to Bitcode

Symbol
Resolution

Linking



23

Step 5: Linking

The linker parses the augmented section 

names and lays out the output according to 

the linker script

• The Module Id encoded in the section name 

allows the linker to override the origin of 

sections coming out of LTO

• It can then apply linker script rules as if these 

sections came from a regular object file

Origin:

/tmp/llvm-lto.o

Symbols:

specialFun

.text.text^^(ROM.o)

Origin:

ROM.o

Symbols:

specialFun

Linker Magic

Output.elf

Section Layout



24

Agenda

Motivating 

Example

1 2
What we need 

to address

4
Summary

3
Implementation



25

Summary

We have shown how 

(Thin)LTO can be 

enhanced to support 

path-based rules in 

linker scripts

The proposed 

approach does not 

require fundamental 

changes to the 

architecture of LTO

This extends the 

benefits of (Thin)LTO 

to a vast field of 

embedded 

applications.

We add a small number of 

attributes to GlobalObjects, 

and augment the LTO APIs 

for the linker during symbol 

resolution

The proposed approach is 

already in production use, 

enabling LTO for applications 

with 10,000+ linker script rules



Thank you 

Follow us on:

For more information, visit us at: 

www.qualcomm.com & www.qualcomm.com/blog 

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2017 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. Other products and brand names 
may be trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries
or business units within the Qualcomm corporate structure, as applicable.  Qualcomm Incorporated includes Qualcomm’s licensin g business, 
QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly -owned subsidiary of Qualcomm Incorporated, 
operates, along with its subsidiaries, substantially all of Qualcomm’s engineering, research and development functions, and s ubstantially all
of its product and services businesses, including its semiconductor business, QCT.


