
LLVM Interpreter

a key component in validation of OpenCL™ compilers

Oleg Maslov, Alexey Bader, Yuri Veselov

Intel
April 30, 2013, The 3rd LLVM European meeting

OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Agenda

• OpenCL™ standard overview

• OpenCL compiler standalone validation tool

• LLVM Interpreter

• Contribution to the LLVM community

3

4/30/2013

OpenCL™ Standard

4

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

5

• Open standard
driven by Khronos*

• Royalty-free

• First spec in 2009

• Cross-platform

Diagram based on PDF OpenCL overview available at http://www.khronos.org/opencl/

OpenCL™ - Open Standard for Parallel Computing

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

6

4/30/2013

• Portable C code for all architectures

• Derived from ISO C99

– Few restrictions, e.g. recursion,

function pointers

– Short vector types e.g., float4, short2,

int16

– Built-in functions: math (e.g., sin),

geometric, common (e.g., min, clamp)

• Configurable N-dimensional

computation domain

• Barriers and memory fences within

workgroups

• Extensive list of optimized

built-in functions

Diagram based on the PDF OpenCL™ overview available at http://www.khronos.org/opencl/

OpenCL™ Standard Overview

7

Target
Processors

Target

Operating

System

OpenCL Spec
Version

Target SDK Developer Benefits

OpenCL 1.2

(Version 2013)

Develop and deploy
visual computing

applications for 3rd and

4th Generation Intel®
Core™ Processors

Get ready for next

generations

(Red Hat*, SUSE*)

OpenCL 1.2

(Version XE 2013)

Preserve your
investment when
developing high

performance compute
applications

Visual
Computing

Domain

Data
Center
Domain

Know the Processors and Operating Systems You Use and

Download the SDK You Need

 Intel® SDK for OpenCL™ Applications 2013
 A Comprehensive Software Development Environment for OpenCL™ Applications

OpenCL compiler validation Standalone Tool

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel OpenCL™ implementation architecture
Running on Intel® CPU and Intel Xeon Phi™ Coprocessor

9

4/30/2013

Application

OpenCL Runtime

Device runtime Agent

(CPU / Xeon Phi)

Parallelization

framework

OpenCL is multicomponent system challenging to validate

OpenCL
Front-End (clang)

OpenCL Device

Back-end

(llvm)

OpenCL

Built-in functions

library

OpenCL™ API

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Conformance Tests
OpenCL™ Implementation validation

• Provided and maintained by Khronos*

• A compliance test for OpenCL™ specification

• System level tests

• Tests OpenCL implementation as whole entity

• All components should be functional

10

4/30/2013

Validation on component level is not trivial

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL™ Standard
Supporting Intel® Many Integrated Core Architecture

• Simultaneous development of multiple components

– Runtime

– Device agent

– Device Back-end

– OpenCL™ built-in functions library

– …

• Conformance tests

– Not functional until all components are ready

• Early testing is highly needed

– Boosts development speed

11

4/30/2013

How to validate device backend?

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL™ Compiler for Intel® CPU
and Intel Xeon Phi™ Coprocessors
Zoom in

12

4/30/2013

Front-End

(clang)

OpenCL

built-in

functions

library

OpenCL
kernel

OpenCL™ LLVM Device Back-end

Standard

LLVM

optimizations

llvm
IR

OpenCL

Specific

passes

JIT / code

generation

JIT code

How to validate device backend?

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool

13

4/30/2013

IDEA!!!
Isolate testing device backend from other components

LLVM Device Backend

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool

14

4/30/2013

Implement standalone tool to work with device back-end

SATest

Execute

JIT

LLVM Device Backend

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool

15

4/30/2013

Implement OpenCL Reference to obtain reference results
Share the same build/execute interface with back-end

LLVM interpreter

OpenCL Reference

Built-in functions

OpenCL™ Reference

SATest

Execute

JIT

LLVM Device Backend

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool

16

4/30/2013

Import LLVM kernel compiled from OpenCL
Import data recorded from running OpenCL kernel

Data

LLVM interpreter

OpenCL Reference

Built-in functions

OpenCL™ Reference

SATest

LLVM IR

Execute

JIT

LLVM Device Backend

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool

17

4/30/2013

Comparator

Data

PASS /

NOT PASS

Compare Reference and Back-end outputs
Report PASS/NOT PASS

LLVM interpreter

OpenCL Reference

Built-in functions

OpenCL™ Reference

SATest

LLVM IR

Execute

JIT

LLVM Device Backend

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Standalone compiler validation tool
Features

Several modes of operation

• Functional Validation

– Check device back-end produces OpenCL™ 1.2 conformant results

– Real life kernels and data

• Performance

– Compile time

– Kernel execution time

– Single thread execution

– Isolate and Detect issues coming from backend

• Build

– Dump LLVM IR and JIT code on specified pass

– Directly track/debug optimizations

18

4/30/2013

Tool for backend developers

LLVM Interpreter

19

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

LLVM Interpreter

• MUST have component for OpenCL™ Reference

• Executes LLVM bytecode directly

• Produces bitwise accurate results

• Slow

• No optimizations

• LLVM trunk version lacks vector and aggregate types

support. Need to implement them

20

4/30/2013

Produces reference results of running OpenCL kernel

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Missing pieces in LLVM interpreter

OpenCL™

kernel void cl_exp(global const float4 *a,

 global float4 *result) {

 int id = get_global_id(0);

 result[id] = exp(a[id]);

}

21

4/30/2013

LLVM IR

define void @cl_exp(<4 x float> addrspace(1)* %a, <4 x float>
addrspace(1)* %result) nounwind {

 %1 = call i64 @get_global_id(i32 0) nounwind readnone
 %sext = shl i64 %1, 32
 %2 = ashr exact i64 %sext, 32
 %3 = getelementptr inbounds <4 x float> addrspace(1)* %a,
i64 %2
 %4 = load <4 x float> addrspace(1)* %3, align 16
 %5 = call <4 x float> @_Z3expDv4_f(<4 x float> %4)
nounwind readnone
 %sext1 = shl i64 %1, 32
 %6 = ashr exact i64 %sext1, 32
 %7 = getelementptr inbounds <4 x float>
addrspace(1)* %result, i64 %6
 store <4 x float> %5, <4 x float> addrspace(1)* %7, align 16
 ret void
}

Not supported in LLVM interperter

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

22

4/30/2013

class Interpreter : public ExecutionEngine, public

InstVisitor<Interpreter> {

 …

 // The runtime stack of executing code.

 // current function record.

 std::vector<ExecutionContext> ECStack;

 …

}

All interpreter logic encapsulated into ‘Interpreter’ class

LLVM Interpreter: Current State
Essential Methods of Interpreter

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

23

4/30/2013

LLVM Interpreter: Current State
Essential Methods of Interpreter

class Interpreter : public ExecutionEngine, public

InstVisitor<Interpreter> {

 …

 /// run - Start execution with the specified function and

arguments.

 virtual GenericValue runFunction(Function *F, const

 std::vector<GenericValue> &ArgValues);

 /// Opcode Implementations(e.g. void visitLoadInst(LoadInst &I))

 void visit*();

 …

}

visit*() methods execute instructions

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

24

4/30/2013

LLVM Interpreter: Current State
Execution Context

struct ExecutionContext {

 …

 /// LLVM values used in this invocation

 std::map<Value *, GenericValue> Values;

 /// Values passed …

 std::vector<GenericValue> VarArgs;

 …

};

Stores current basic block, function and next instruction

Local variables and

arguments

container

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

25

4/30/2013

GenericValue Structure

Universal container for variable values

struct GenericValue {

 union {

 double DoubleVal;

 float FloatVal;

 PointerTy PointerVal;

 struct { unsigned int first; unsigned int second; } UIntPairVal;

 unsigned char Untyped[8];

 };

 APInt IntVal; // also used for long doubles

 ...

};

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

26

4/30/2013

GenericValue Structure

struct GenericValue {

 union {

 double DoubleVal;

 float FloatVal;

 PointerTy PointerVal;

 struct { unsigned int first; unsigned int second; } UIntPairVal;

 unsigned char Untyped[8];

 };

 APInt IntVal; // also used for long doubles

 ...

 std::vector<GenericValue> AggregateVal;

...

};

Stores missing

vector and

aggregate type

Adding new single field covers vector and aggregate types

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

27

4/30/2013

Example of New visit* Method

Typical visit* method

void visit*(Instruction& I)

{

 ExecutionContext &SF = ECStack.back();

 const Type *Ty = I.getType();

 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

 GenericValue R; // Result

 switch (Ty->getTypeID())

 {

 case: Type::IntegerTyID: // R.IntVal = Src1.IntVal OP Src2.IntVal;

 case: Type::FloatTyID: // R.FloatVal = Src1.FloatVal OP Src2.FloatVal;

 …

}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

28

4/30/2013

Example of New visit* Method

Typical visit* method

void visit*(Instruction& I)

{

 ExecutionContext &SF = ECStack.back();

 const Type *Ty = I.getType();

 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);

 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);

 GenericValue R; // Result

 switch (Ty->getTypeID())

 {

 case: Type::IntegerTyID: // R.IntVal = Src1.IntVal OP Src2.IntVal;

 case: Type::FloatTyID: // R.FloatVal = Src1.FloatVal OP Src2.FloatVal;

 …

 case: Type::VectorTyID:

 // set vector size

 R.AggregateVal.resize(Src1.AggregateVal.size());

 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())

 // process R.FloatVecVal

 …

 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy())

 // process R.IntVecVal

 …

 }

Processing vectors

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Interpreter
Operations implemented

30

4/30/2013

Group Number of

operations

Vector Memory Access and Addressing 4

Vector binary 12

In-vector 3

Vector comparison 3

Vector bitwise binary 6

Vector conversion 10

Aggregate 2

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL™ Reference Tool
Built-in Functions Implemented

• High-precision reference implementation

• Full support of OpenCL™ 1.2 standard

• Over 3000 functions

• Math

• Geometric

• Common

• Image

• Conversions between types (~2000)

• etc

31

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Demo

32

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL™ Back-end Validation for
Intel® Xeon Phi™ Coprocessor
Summary

• Enabled validation at early stage

• At 1st stages on functional simulator

• Other components of OpenCL™ infrastructure not yet ready

• Before hardware was ready

• Saved time on isolated backend development

33

4/30/2013

OpenCL Runtime

Device runtime Agent

(CPU / Xeon Phi)

Parallelization

framework

OpenCL

Front-End (clang)

OpenCL Device

Back-end

(llvm)

OpenCL

Built-in functions

library

Contribution to the LLVM Community

34

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Interpreter
Summary of our Modifications

• Added Vector and aggregate types to Execution Context

• Added Vector operations

• Memory access and addressing

• Binary

• In-vector

• Comparison

• Constant

• Added Aggregate types operations

• 'extractvalue'

• 'insertvalue'

35

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Contribution to the LLVM Community

• Uploading interpreter changes to LLVM repository

• Incremental commits adding new features to interpreter

• Vectors and aggregate types will be supported in interpreter

36

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Wish list for the Interpreter

• Add standard C LLVM intrinsics support

• Enhance processing of constant expressions

37

4/30/2013

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Multiple components are developed simultaneously

• Existing tests work only after all components are ready

• Lack of Early validation

• We provide early validation infrastructure using LLVM

interpreter

38

4/30/2013

Thank you

39

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on
Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using
specific computer systems, components, software, operations and functions. Any change to any of
those factors may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products.

Copyright © , Intel Corporation. All rights reserved. Intel, the Intel logo, Xeon, Xeon Phi, Core,
VTune, and Cilk are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimer & Optimization Notice

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

40

