
LLVM: built-in scalable code clone detection

 based on semantic analysis

Institute for System Programming of the Russian

Academy of Sciences

Sevak Sargsyan : sevaksargsyan@ispras.ru

Shamil Kurmangaleev : kursh@ispras.ru

Andrey Belevantsev : abel@ispras.ru

1. Identical code fragments except whitespaces, layout and comments.

2. Identical code fragments except identifiers, literals, types, layout and

comments.

3. Copied fragments of code with further modifications. Statements can be

changed, added or removed.

Considered Clone Types

Considered Clone Types : Examples

Original source

4: void sumProd(int n) {

5: float sum = 0.0;

6: float prod = 1.0;

7: for (int i = 1; i<=n; i++) {

8: sum = sum + i;

9: prod = prod * i;

10: foo(sum, prod);

11: }

12: }

Clone Type 1

void sumProd(int n) {

 float sum = 0.0; //C1

 float prod = 1.0; // C2

 for (int i = 1; i <= n; i++) {

 ____ sum = sum + i;

 ____ prod = prod * i;

 ____ foo(sum, prod);

 }

}

Tabs and comments are added

Clone Type 2

void sumProd(int n) {

 int s = 0; //C1

 int p = 1; // C2

 for (int i = 1; i <= n; i++) {

 ____ s = s + i;

 ____ p = p * i;

 ____ foo(s, p);

 }

}

Tabs and comments are added

Variables names and types are

changed

Clone Type 3

void sumProd(int n) {

 int s = 0; //C1

 int p = 1; // C2

 for (int i = 1; i <= n; i++) {

 ____ s = s + i * i;

 ____ foo(s, p);

 }

}

Tabs and comments are added

Variables names and types are

changed

Instructions are deleted,

modified

Code Clone Detection Applications

1. Detection of semantically identical fragments of code.

2. Automatic refactoring.

3. Detection of semantic mistakes arising during incorrect copy-paste.

Textual (detects type 1 clones)
1. S. Ducasse, M. Rieger, S. Demeyer, A language independent approach for detecting duplicated code, in: Proceedings of the 15th International

Conference on Software Maintenance.

Lexical (detects type 1,2 clones)
1. T.Kamiya, S.Kusumoto, K.Inoue, CCFinder : A multilinguistic token-based code clone detection system for large scale source code, IEEE

Transactions on Software Engineering.

Syntactic (detects type 1,2 clones and type 3 with low accuracy)
1. I. Baxter, A. Yahin, L. Moura, M. Anna, Clone detection using abstract syntax trees, in: Proceedings of the 14th International Conference on

Software.

Metrics based (detects type 1,2,3 clones with low accuracy)
1. N. Davey, P. Barson, S. Field, R. Frank, The development of a software clone detector, International Journal of Applied Software Technology.

Semantic (detects type 1,2,3 clones, but has big computational complexity)
1. M. Gabel, L. Jiang, Z. Su, Scalable detection of semantic clones, in: Proceedings of the 30th International Conference on Software Engineering,

ICSE 2008

Code clone detection approaches and restrictions

Design code clone detection tool for C/C++ languages capable for large projects

analysis.

Requirements :

• Semantic based (based on Program Dependence Graph)

• High accuracy

• Scalable (analyze up to million lines of source code)

• Detect clones within number of projects

Formulation Of The Problem

Architecture

Generate PDGs during compilation time of

the project based on LLVM compiler.

Analyze PDGs to detects code clones

Architecture : PDGs’ generation

clang

LLVM

PASS

PDG

PASS

executable

1. Construction of PDG

2. Optimizations of PDG

3. Serialization of PDG

PDG for one module

Generation of Program Dependence

Graphs (PDG)

New

Pass

Example of Program Dependence Graph

void foo() {

 int b = 5;

 int a = b*b;

}

define void @foo() #0 {

 %b = alloca i32

 %a = alloca i32

 store i32 5, i32* %b

 %1 = load i32* %b

 %2 = load i32* %b

 %3 = mul nsw i32 %1, %2

 store i32 %3, i32* %a

}

%b = alloca i32

store i32 5, i32* %b

%1 = load i32* %b %2 = load i32* %b

%3 = mul nsw i32 %1, %2

store i32 %3, i32* %a

%a = alloca i32

C/C++ Code

LLVM bitcode

PDG

Edges with blue color are control dependences

Edges with black color are data dependences

Architecture : PDGs’ analyzes

PDG for one module

1. Load dumped PDGs

2. Split PDGs to sub graphs

3. Fast checks (check if two graphs are not clones)

4. Maximal isomorphic sub graphs detection

(approximate)

5. Filtration

6. Printing

Code Clone Detection Tool

Automatic clones generation for testing :

LLVM optimizations

C/C++ source code

LLVM bitcode

Unoptimized bitcode Optimized bitcode

PDG PDG

Compare PDGs to detect clone

Standard

optimization

passes of LLVM

are applied

Generated by

clang

Automatic clones generation for testing :

 PDGs’ marge

PDG 1 PDG 2 PDG n

List of PDGs for the project

PDG’ 1 PDG’ 2 PDG’ n/2

Modified list of PDGs

PDG i PDG’ j

Check for clone
PDG’ j

PDG k PDG i

Advantages

1. Compile-time very fast generation of PDGs.

2. No need of extra analysis for dependencies between compilation modules.

3. High accuracy (above 90 %).

4. Scalable to analyze million lines of source code (С/С++).

5. Possibility to detect clones within list of projects.

6. Possibility for parallel run.

7. Opportunity of automatic clones generation for testing.

Results : comparison of tools

Test Name CCFinder(X) MOSS CloneDR CCD

copy00.cpp yes yes yes yes

copy01.cpp yes yes yes yes

copy02.cpp yes yes yes yes

copy03.cpp yes yes yes yes

copy04.cpp yes yes yes yes

copy05.cpp yes yes yes yes

copy06.cpp no no yes yes

copy07.cpp no yes yes yes

copy08.cpp no no no yes

copy09.cpp no no yes yes

copy10.cpp no no yes yes

copy11.cpp no no no yes

copy12.cpp no yes yes yes

copy13.cpp no yes yes yes

copy14.cpp yes yes yes yes

copy15.cpp yes yes yes yes

1. Chanchal K. Roy : Comparison

and evaluation of code clone

detection techniques and tools : A

qualitative approach

All tests are clones. One original file was modified to obtain all 3 types of clones [1].

yes – test was detected as clone with original code.

no – test was not detected

0

20

40

60

80

100

Accuracy

Accuracy

Results : PDGs’ generation

Intel core i3, 8GB Ram.

0

2

4

6

8

10

12

14

16

Source code
lines (million
lines) 0

0.5

1

1.5

2

2.5
Compilation
time (hours)

Compilation
time with
PDGs'
generation
(hours)

0
50

100
150
200
250
300
350
400
450
500

Size of PDGs'
(megabaytes)

Source code lines PDGs’ generation time
Size of dumped PDG

Results : clones detection

Similarity level higher 95%, minimal clone length 25.

Intel core i3, 8GB Ram.

0

5

10

15

20

25

30

35

40

Clones detection
time (hour)

0

500

1000

1500

2000

2500

Detectes
clones

False Positive

Clone detection time
Number of detected clones

Results

Results

Thank You.

