
THE ATTRIBUTOR: A VERSATILE INTER-PROCEDURAL
FIXPOINT ITERATION FRAMEWORK
LLVM-Dev’19 — October 22, 2019 — San Jose, CA, USA

Johannes Doerfert*, Hideto Ueno, Stefan Stipanovic

*Leadership Computing Facility
*Argonne National Laboratory
*https://www.alcf.anl.gov/

https://www.alcf.anl.gov/


ACKNOWLEDGMENT

Two of the authors were supported by Google Summer of Code (GSoC)!

This research was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of
Science and the National Nuclear Security Administration) responsible for the
planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing imperative.

1/16



I. BACKGROUND



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ?

(2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ?

(3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?

(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ?

(5) the return type ?

(1, ∞) (1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞)

(1, ∞) (16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞) (16, 16)

(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞)

(1, ∞)

(16, 16)(16, 16)

(1, ∞)(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞)

(1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16) (1, ∞)(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞)

(1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞)

(1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, 16)(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16)

(1, 16)

(16, 16)

⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)(16, 16) (1, ∞)

(1, 16)

(16, 16)

(1, 16)

(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)

(16, 16) (1, ∞)

(1, 16)

(16, 16)

(1, 16)

(16, 16) ⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)

(1, 16)

(16, 16) (1, ∞)

(1, 16)

(16, 16)

(1, 16)

(16, 16)

⊙

2/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

What is the alignment of:

(1) the return type ? (2) the returned value ? (3) the argument ?
(1) the return type ? (4) the returned value ? (5) the return type ?

(1, ∞) (1, ∞)

(16, 16)(16, 16)

(1, ∞)(1, 16)

(16, 16)

(1, ∞)(1, 16)

(16, 16)

(1, 16)

(16, 16) ⊙

2/16



ABSTRACT STATES

3/16



ABSTRACT STATES

3/16



ABSTRACT STATES

3/16



ABSTRACT STATES

3/16



FIXPOINT DATA FLOW ANALYSIS — ALIGNMENT EXAMPLE

int * checkAndAdvance( int * __attribute__((aligned(16))) p ) {
if (*p == 0)
return checkAndAdvance(p + 4) ;

return p ;
}

4/16



THE ATTRIBUTOR — USAGE

Attributor A;

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16



THE ATTRIBUTOR — USAGE

Attributor A;

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16



THE ATTRIBUTOR — USAGE

Attributor A;

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16



THE ATTRIBUTOR — USAGE

// Restrict deduction to specific abstract attributes.
auto Whitelist = {&AAAlign::ID};

Attributor A(Whitelist);

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16



THE ATTRIBUTOR — USAGE

// Restrict deduction to specific abstract attributes.
auto Whitelist = {&AAAlign::ID,

/* Think IP-SCCP */ &AAIsDead::ID, &AAValueSimplify::ID };

Attributor A(Whitelist);

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16



THE ATTRIBUTOR — USAGE

// Restrict deduction to specific abstract attributes.
auto Whitelist = {&AAAlign::ID,

/* Think IP-SCCP */ &AAIsDead::ID, &AAValueSimplify::ID };

Attributor A(Whitelist);

// Select what information is to be deduced.
IRPosition IRPRet = IRPosition::returned(Fn) ;
const auto &AA = A.getOrCreateAAFor< AAAlign >(IRPRet);

// Deduce information and manifest it in the IR.
auto Changed = A.run(*Fn->getParent());

5/16

AAAlign is unaware of AAIsDead and AAValueSimplify!



THE ATTRIBUTOR — WHAT IT IS

- easy way to perform fixpoint analyses
dependence tracking, work list algorithm, timeouts, …

- powerful way to perform fixpoint analyses
utilize concurrently deduced information, e.g., liveness

- alternative to inlining
IPO + internalization + function rewriting, e.g., argument promotion

6/16



THE ATTRIBUTOR — WHAT IT IS

- easy way to perform fixpoint analyses
dependence tracking, work list algorithm, timeouts, …

- powerful way to perform fixpoint analyses
utilize concurrently deduced information, e.g., liveness

- alternative to inlining
IPO + internalization + function rewriting, e.g., argument promotion

6/16



THE ATTRIBUTOR — WHAT IT IS

- easy way to perform fixpoint analyses
dependence tracking, work list algorithm, timeouts, …

- powerful way to perform fixpoint analyses
utilize concurrently deduced information, e.g., liveness

- alternative to inlining
IPO + internalization + function rewriting, e.g., argument promotion

6/16



THE ATTRIBUTOR — WHAT IT IS

- easy way to perform fixpoint analyses
dependence tracking, work list algorithm, timeouts, …

- powerful way to perform fixpoint analyses
utilize concurrently deduced information, e.g., liveness

- alternative to inlining
IPO + internalization + function rewriting, e.g., argument promotion

6/16



THE ATTRIBUTOR — WHAT IT IS

- easy way to perform fixpoint analyses
dependence tracking, work list algorithm, timeouts, …

- powerful way to perform fixpoint analyses
utilize concurrently deduced information, e.g., liveness

- alternative to inlining
IPO + internalization + function rewriting, e.g., argument promotion

6/16

All good, but why?



II. MOTIVATION



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion

≡ loops

• code size
• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:

• recursion

≡ loops

• code size
• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion

≡ loops
• code size
• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion ≡ loops

• code size
• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion ≡ loops
• code size

• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion ≡ loops
• code size
• parallelism (think pthread_create) ⇑

• (declarations) ⇒

7/16



THE ATTRIBUTOR — THE WHY IPO?

inlining has limits:
• recursion ≡ loops
• code size
• parallelism (think pthread_create) ⇑
• (declarations) ⇒

7/16

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.



THE ATTRIBUTOR — WHY A FRAMEWORK?

8/16



THE ATTRIBUTOR — WHY A FRAMEWORK?

8/16



THE ATTRIBUTOR — WHY A FRAMEWORK?

8/16



III. DESIGN



LLVM-IR POSITIONS

9/16



LLVM-IR POSITIONS

9/16



AAVALUESIMPLIFYRETURNED::UPDATEIMPL(ATTRIBUTOR &A)

ChangeStatus updateImpl(Attributor &A) override {

}

10/16



AAVALUESIMPLIFYRETURNED::UPDATEIMPL(ATTRIBUTOR &A)

ChangeStatus updateImpl(Attributor &A) override {
Optional<Value *> Before = getAssumedSimplifiedValue();

Optional<Value *> After = getAssumedSimplifiedValue();
if (Before == After)
return ChangeStatus::UNCHANGED;

return ChangeStatus::CHANGED;
}

10/16



AAVALUESIMPLIFYRETURNED::UPDATEIMPL(ATTRIBUTOR &A)

ChangeStatus updateImpl(Attributor &A) override {
Optional<Value *> Before = getAssumedSimplifiedValue();

auto Pred = [&](Instruction &I) {

};
if (!A.checkForAllInstructions(Pred, this, {Instruction::Ret}))
return indicatePessimisticFixpoint();

Optional<Value *> After = getAssumedSimplifiedValue();
if (Before == After)
return ChangeStatus::UNCHANGED;

return ChangeStatus::CHANGED;
}

10/16



AAVALUESIMPLIFYRETURNED::UPDATEIMPL(ATTRIBUTOR &A)

ChangeStatus updateImpl(Attributor &A) override {
Optional<Value *> Before = getAssumedSimplifiedValue();

auto Pred = [&](Instruction &I) {
A.getAAFor<AAValueSimplify>(this, I.getOperand(0));

};
if (!A.checkForAllInstructions(Pred, this, {Instruction::Ret}))
return indicatePessimisticFixpoint();

Optional<Value *> After = getAssumedSimplifiedValue();
if (Before == After)
return ChangeStatus::UNCHANGED;

return ChangeStatus::CHANGED;
}

10/16



AAVALUESIMPLIFYRETURNED::UPDATEIMPL(ATTRIBUTOR &A)

ChangeStatus updateImpl(Attributor &A) override {
Optional<Value *> Before = getAssumedSimplifiedValue();

auto Pred = [&](Instruction &I) {
return combine(A.getAAFor<AAValueSimplify>(this, I.getOperand(0)));

};
if (!A.checkForAllInstructions(Pred, this, {Instruction::Ret}))
return indicatePessimisticFixpoint();

Optional<Value *> After = getAssumedSimplifiedValue();
if (Before == After)
return ChangeStatus::UNCHANGED;

return ChangeStatus::CHANGED;
}

10/16



NEW ATTRIBUTES

11/16



NEW ATTRIBUTES

nofree

11/16



NEW ATTRIBUTES

nosync

11/16



NEW ATTRIBUTES

willreturn

11/16



NEW ATTRIBUTES

dereferenceable_globally

11/16



NON-ATTRIBUTE DEDUCTIONS

12/16



NON-ATTRIBUTE DEDUCTIONS

liveness

12/16



NON-ATTRIBUTE DEDUCTIONS

returned values

12/16



NON-ATTRIBUTE DEDUCTIONS

value simplify

12/16



NON-ATTRIBUTE DEDUCTIONS

heap-2-stack

12/16



NON-ATTRIBUTE DEDUCTIONS

pointer privatization

12/16



THE ATTRIBUTOR — CHALLENGES

when to specialize for call sites
(≡ “inlining + outlining”)

13/16



THE ATTRIBUTOR — CHALLENGES

when to specialize for call sites
(≡ “inlining + outlining”)

13/16



THE ATTRIBUTOR — CHALLENGES

how to seed abstract attributes
(heuristics, pgo-based, ...)

13/16



THE ATTRIBUTOR — CHALLENGES

reduce overheads

13/16



THE ATTRIBUTOR — CHALLENGES

combine deduction schemes, e.g.,
context-based & def-use-based

13/16



THE ATTRIBUTOR — CHALLENGES

…

13/16



EVALUATION — FUNCTIONATTRS (LATE) VS. ATTRIBUTOR (EARLY)

loc. attribute # w/o A. # w/ A. A. Δ tot. w/o A. tot. w/ A.

fn. nosync 0 7612 0.0% 4.36%

arg. dereferenceable 61825 66317 +7.27% 35.4% 38.0%
fn. nofree 5762 10188 +76.81% 3.3% 5.83%
fn. willreturn 0 4146 0.0% 2.37%
arg. writeonly 0 3562 0.0% 2.04%
arg. readnone 5377 6040 +12.33% 3.08% 3.46%
fn. noreturn 965 1611 +66.94% 0.553% 0.923%
arg. align 419 900 +114.80% 0.24% 0.515%
ret. dereferenceable 19041 19479 +2.30% 11.2% 11.4%
arg. nocapture 28991 29413 +1.46% 16.6% 16.8%
arg. readonly 14946 15281 +2.24% 8.56% 8.75%
arg. returned 512 599 +16.99% 0.293% 0.343%
arg. noalias 4098 4158 +1.46% 2.35% 2.38%
ret. noalias 1150 1194 +3.83% 0.676% 0.701%

14/16



EVALUATION — FUNCTIONATTRS (LATE) VS. ATTRIBUTOR (EARLY)

loc. attribute # w/o A. # w/ A. A. Δ tot. w/o A. tot. w/ A.

fn. nosync 0 7612 0.0% 4.36%
arg. dereferenceable 61825 66317 +7.27% 35.4% 38.0%

fn. nofree 5762 10188 +76.81% 3.3% 5.83%
fn. willreturn 0 4146 0.0% 2.37%
arg. writeonly 0 3562 0.0% 2.04%
arg. readnone 5377 6040 +12.33% 3.08% 3.46%
fn. noreturn 965 1611 +66.94% 0.553% 0.923%
arg. align 419 900 +114.80% 0.24% 0.515%
ret. dereferenceable 19041 19479 +2.30% 11.2% 11.4%
arg. nocapture 28991 29413 +1.46% 16.6% 16.8%
arg. readonly 14946 15281 +2.24% 8.56% 8.75%
arg. returned 512 599 +16.99% 0.293% 0.343%
arg. noalias 4098 4158 +1.46% 2.35% 2.38%
ret. noalias 1150 1194 +3.83% 0.676% 0.701%

14/16



EVALUATION — FUNCTIONATTRS (LATE) VS. ATTRIBUTOR (EARLY)

loc. attribute # w/o A. # w/ A. A. Δ tot. w/o A. tot. w/ A.

fn. nosync 0 7612 0.0% 4.36%
arg. dereferenceable 61825 66317 +7.27% 35.4% 38.0%
fn. nofree 5762 10188 +76.81% 3.3% 5.83%
fn. willreturn 0 4146 0.0% 2.37%
arg. writeonly 0 3562 0.0% 2.04%
arg. readnone 5377 6040 +12.33% 3.08% 3.46%
fn. noreturn 965 1611 +66.94% 0.553% 0.923%
arg. align 419 900 +114.80% 0.24% 0.515%
ret. dereferenceable 19041 19479 +2.30% 11.2% 11.4%
arg. nocapture 28991 29413 +1.46% 16.6% 16.8%
arg. readonly 14946 15281 +2.24% 8.56% 8.75%
arg. returned 512 599 +16.99% 0.293% 0.343%
arg. noalias 4098 4158 +1.46% 2.35% 2.38%
ret. noalias 1150 1194 +3.83% 0.676% 0.701%14/16



EVALUATION — FUNCTIONATTRS (LATE) VS. ATTRIBUTOR (EARLY)

loc. attribute # w/o A. # w/ A. A. Δ tot. w/o A. tot. w/ A.

fn. nosync 0 7612 0.0% 4.36%
arg. dereferenceable 61825 66317 +7.27% 35.4% 38.0%
fn. nofree 5762 10188 +76.81% 3.3% 5.83%
fn. willreturn 0 4146 0.0% 2.37%
arg. writeonly 0 3562 0.0% 2.04%
arg. readnone 5377 6040 +12.33% 3.08% 3.46%
fn. noreturn 965 1611 +66.94% 0.553% 0.923%
arg. align 419 900 +114.80% 0.24% 0.515%
ret. dereferenceable 19041 19479 +2.30% 11.2% 11.4%
arg. nocapture 28991 29413 +1.46% 16.6% 16.8%
arg. readonly 14946 15281 +2.24% 8.56% 8.75%
arg. returned 512 599 +16.99% 0.293% 0.343%
arg. noalias 4098 4158 +1.46% 2.35% 2.38%
ret. noalias 1150 1194 +3.83% 0.676% 0.701%14/16

Details on our poster!



EVALUATION — (ATTRIBUTOR AIDED) “HEADER TIME OPTIMIZTION” (HTO)

LTO better than HTO

HTO matches LTO

15/16



EVALUATION — (ATTRIBUTOR AIDED) “HEADER TIME OPTIMIZTION” (HTO)

LTO better than HTO

HTO matches LTO

15/16

Details on our poster!



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm

Posters: tomorrow 4:00pm - 5:00pm
ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm

Posters: tomorrow 4:00pm - 5:00pm
ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16

1) introduce a new llvm::Attribute

2) derive the new llvm::Attribute with the Attributor
3) use the new llvm::Attribute to improve alias analysis



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm

Posters: tomorrow 4:00pm - 5:00pm
ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16

1) introduce a new llvm::Attribute
2) derive the new llvm::Attribute with the Attributor

3) use the new llvm::Attribute to improve alias analysis



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm

Posters: tomorrow 4:00pm - 5:00pm
ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16

1) introduce a new llvm::Attribute
2) derive the new llvm::Attribute with the Attributor
3) use the new llvm::Attribute to improve alias analysis



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm
Posters: tomorrow 4:00pm - 5:00pm

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm
Posters: tomorrow 4:00pm - 5:00pm

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16



THE ATTRIBUTOR FRAMEWORK @ LLVM-DEV’19

Tutorial: tomorrow 1:45pm - 2:55pm
Posters: tomorrow 4:00pm - 5:00pm

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

ATTRIBUTOR, A FRAMEWORK FOR INTER-PROCEDURAL INFORMATION DEDUCTION

Johannes Doerfert, Hideto Ueno, Stefan Stipanovic
Argonne National Laboratory, University of Tokyo, University of Novi Sad

Abstract

LLVM functions, arguments, and other entities can be tagged with attributes to encode information, e.g., readonly if a function only reads memory, or nounwind if a function will not throw exceptions. These attributes are used, explicitly
or implicitly, by many optimizations to decide if a transformation is valid or not.
The goal of this project was to replace the current function attributes inference algorithms as well as strongly entangled IPOs, e.g., argument promotion. This is be accomplished via intra- and inter-procedural fixpoint analyses in which the
(optimistic) state can be shared at will. The Attributor makes this process easy, through new abstractions that prove to be useful not only for attribute deduction but for other transformations and analyses. For example, the Attributor will
not deduce information for dead code, it will simplify values (think IPSCCP), perform heap-to-stack conversion, and more.
As part of this work we also added and infer new attributes (nofree, nosync, willreturn) and we started to use the now available information in more places, e.g., dereferenceable is now used to improve alias queries.

Running Example
Acknowledgements

Hideto Ueno and Stefan Stipanovic were supported by Google Summer of Code (GSoC) and through LLVM Foundation travel grants.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department
of Energy organizations (Office of Science and the National Nuclear Security Administrat ion) responsible for the planning and
preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early
testbed platforms, in support of the nation’s exascale computing imperative. Additionally, this research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

(LLVM) IRPositions

Abstract States

(1) Initialize

(2) Propagate

(3) Manifest

Evaluation: # Attributes in the IR

location attribute # w/o Attributor # w/ Attributor Attributor ∆ total w/o Attributor total w/ Attributor

argument nonnull 806 67469 82.7 × 0.46% 38.6%
function nosync 0 7612 0.0% 4.36%
returned nonnull 950 20046 20.11 × 0.558% 11.8%
function nosyn 0 7612 0.0% 4.36%

argument dereferenceable 61825 66317 +7.27% 35.4% 38.0%
function nofree 5762 10188 +76.81% 3.3% 5.83%
function willreturn 0 4146 0.0% 2.37%

argument writeonly 0 3562 0.0% 2.04%
argument readnone 5377 6040 +12.33% 3.08% 3.46%

function noreturn 965 1611 +66.94% 0.553% 0.923%
argument align 419 900 +114.80% 0.24% 0.515%
returned dereferenceable 19041 19479 +2.30% 11.2% 11.4%
returned align 0 432 0.0% 0.254%

argument nocapture 28991 29413 +1.456% 16.6% 16.8%
argument readonly 14946 15281 +2.24% 8.56% 8.75%
argument returned 512 599 +16.99% 0.293% 0.343%

function norecurse 8627 8714 +1.00% 4.94% 4.99%
function nounwind 92888 92823 -0.07% 53.2% 53.2%

argument noalias 4098 4158 +1.46% 2.35% 2.38%
returned noalias 1150 1194 +3.83% 0.676% 0.701%
function readnone 2324 2336 +0.52% 1.33% 1.34%
function writeonly 1344 1354 +0.74% 0.77% 0.775%

Abstract Attribute Hierarchy

Liveness-Aware Helpers

Attribute Interaction

Abstract Attribute Highlights

AAIsDead — omnipresent liveness information

Must-Be-Executed-Context-based deduction

Heap-To-Stack Conversion

co®�t²�i¶	�¤� �¢�µ�´�

�il¬�u³�tr¡�´�i¶	�

�backgr¯�un¤�

�inform¡�´�io®�

�i®�©�´�ia¬�iz¡�´�io®� o¦�
ab³�tra£�´� ¡�´�t²�i¢�µ�´e�³

·�©�t¨� �know®�
"IR-knowledge"
¤e�²�i¶	�¤� thr¯�ug¨�
e�¸�i³�´�in§� APIs
an¤� ¡�´�t²�i¢�µ�´e�³

�pr¯�pag¡�´�io®� �h
¡�°�°e�n³

"³�´e�°�-�b¹�-
�³�´e�p" �u®�´�i¬� ¡�

�¦i¸�p¯�i®�´�
�i³ ²��ac¨e�¤�

wor«�-�¬�i³�´�-�³�ty¬e�,
¤e�°e�n¤e�n£e� trac«�in§�,

´�ie�¯�µ�´�, . . .

ma®�i¦��³�´� �¦ina¬� �³�t¡�´e� �i®� t¨e� I��,

ad¤� ¡�´�t²�i¢�µ�´e�³, ²��mo¶	� ¤e�a¤�

co¤e�, ²��pla£e� con³�ta®�t³, ²��w²�©�´e�

�¦un£�´�io®� �³�ign¡�´�u²��³, ...

> 40% �¦un£�´�ion³ �ha¶	� mo²��
�inform¡�´�io®�

ab³�tra£�´�ion³ &�¨e�¬�°e�r³ av¡�ilab¬e� �fort¨�i³ ''�³�tandar¤�''�lay¯�µ�´�, ¯�t¨e�r¤e�³�ign³ �pos³�ib¬e�th¯�ug¨�

¤e�¤�u£e�
�inform¡�´�io®� o®e�
cal¬� �³�©�´e�/in³�t²�u£�-
´�io®�/va¬�µe�/... ¡�´�

¡� ´�ie�

t¨�i³ c¯�µ�p¬�in§�

�i³ t¨e� ²��aso®�

·	� wa®�´� ¡�

�³�ing¬e�

�frae�wor«�

"Header Time Optimization": Cross-Translation Unit Optimization via Annotated Headers
William S. Moses (wmoses@mit.edu), Johannes Doerfert (jdoerfert@anl.gov)

MIT CSAIL, Argonne National Lab

Writing Optimizable Code is Hard

How do we ensure that norm is hoisted outside the loop (and normalize vectorized)?

double norm(double *A, int n);

void normalize(double *out, double *in, int n) {
for (int i = 0; i < n; ++i)

out[i] = in[i] / norm(in, n);
}

We could try adding: restrict type, const type, pure a�ribute, #pragma
vectorize(enable), #pragma interleave(enable), __declspec((noalias)).

None of those work.

What we really want are two LLVM a�ributes:

__attribute__((fn_attr("readonly"), fn_attr("argmemonly")))
double norm(double *A, int n);

void normalize(double *restrict out, double *restrict in, int n);

This is a problem in real programs! In the DOE RSBench benchmark [2] adding “read-
none” to fast_cexp gives a 7% improvement to the enঞre program (with another 1%
for “unwind”).

Automatically Making Code Optimizable

LLVM automaঞcally derives these a�ributes as part of the compilaঞon process, then
throws it away when it’s done

Let’s ensure this informaঞon is accessible across translaঞon units.

Why not always use LTO?

Running LTO (even ThinLTO [3]) is a burden on compile ঞmes
LTO may not be available in your build / operaঞng system
It’s o[en impossible to run LTO on your enঞre program (e.g. using an external
library)

Also, it’s interesঞng to see how much of LTO’s speedups come from “easily fixable”
mechanisms and provide user’s the agency to fix them in source code (making the
speedups available to everyone independent from compiler/linker used)

Header Files

HTO creates new files in a given directory that can be included in any C/C++ program
(chosen for easiest experimentaঞon).

Not all LLVM a�ributes are representable with exisঞng Clang a�ributes. We created a
generic way to represent LLVM a�ributes in Clang (shown below).

struct Vector; struct Matrix;

__attribute__((fn_attr("readonly"), arg_attr(0, "readonly"),
ret_attr("noalias")))

Vector* matvec(Matrix *M, Vector *B);

Introducing "Header Time Optimization"

At the end of the compilaঞon process, denote what derived a�ributes can be safely
added to funcঞons using LLVM’s exisঞng analyses and A�ributor [1].

Header ঞme opঞmizaঞon has three modes of operaঞon: remark mode (Figure 1),
pipeline mode (Figure 2, 3), and diff mode (in progress) where we create a diff for
original source tree.

// file1.c

double fcexp(double *A, int n) { ... }

file1.c:2:1: remark: derived following attributes:

fn_attr("readonly") arg_attr(0, "readonly") [-Rannotations]

double fcexp(double* a, int n) {

clang -Rannotations

Figure 1. Remark Mode: print out opঞmizaঞon remarks for a�ributes that should be added to
funcঞons

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

// hto/fileN.h

attribute((fn_attr("readnone")))

double fcexp(double *A);
// hto/file1.c

attribute((fn_attr("readnone")))

double fcexp(double *A);

clang -hto_dir=hto

// fileN.c

double fcexp(double *A)

{ ... }
// file1.c

double fcexp(double *A)

{ ... }

executable.o
clang -include hto/*

Figure 2. Pipeline Mode: automaঞcally generate a new header file with this new informaঞon, then use
this header to recompile the source with this informaঞon.

// libsum.c

double sum(double *A)

{ ... }

// sum.h

attribute((fn_attr("readnone")))

double sum(double *A);

libsum.o

clang -hto_dir=hto

// user.c

double fcexp(double *A)

{ ... }

executable.o
clang user.c -lsum

Figure 3. Pipeline mode for a library. The annotated header is shipped with the library and used to
compile user code.

Present Limitations & FutureWork

We currently don’t generate annotaঞons for funcঞons with anonymous structs (we
have a script to automaঞcally generate random names), C++ member funcঞons (since
they can’t forward declared), array type of struct/classes (type mystruct[3] is incom-
plete ahead of ঞme).

When we allow users to output a diff (easier for integraঞon) rather than pipeline (easier
for experiments), these limitaঞons are resolved and we get more performance gains.

In the future we plan to generate standard C/C++ a�ributes when they exist.

Experiments

Ran mulঞ-source benchmarks in LLVM test suite

Annotated headers allow more LLVM opঞmizaঞons to perform be�er opঞmizaঞons:
165% increase in mem2reg promoঞons, 33% increase in correlated value propagaঞons,
28% increase common subexpression eliminaঞon, etc.

HTO was able to find sigificnat speedups for many programs. Comparing with LTO we
find that there are three places of interest: where neither found a speedup, where LTO
found a speedup HTO didn’t and where both HTO and LTO found a speedup.

Speedup of HTO over Normal

Benchmark-5%

0%

5%

10%

15%

20%

25%

Speedup 

1 HTO
Normal

Speedup of HTO and LTO over Normal

-10% -5%  0%  5% 10% 15% 20% 25% 2%
LTO speedup

-10%

-5%

 0%

 5%

10%

15%

20%

25%

 2%

HT
O 

sp
ee

du
p LTO be�er

than HTO

HTO matches LTO

Figure 4. Speedups of HTO and LTO on the LLVM mulঞsource test suite

Let’s now look at the benchmarks where either LTO or HTO found a speedup. We
see that for more than half of the LTO speedups can be simply derived by funcঞon
annotaঞons/HTO alone. For the other half of the speedups, LTO takes sigificantly
longer to compile, implying that inlining/IPO is necessary.

Speedup of HTO and LTO

Benchmark-2%

 0%

 2%

 5%

10%

15%

20%

25%

Speedup 

HTO <  LTO ±2% HTO  LTO ±2%
HTO
LTO

Compile+Link ঞme overhead of LTO over HTO

Benchmark 0%

25%

50%

75%

100%

125%

150%

LTO
Compilation
Slowdown

LTO
HTO 1

205%

(runtime) HTO <  LTO ±2% (runtime) HTO  LTO ±2%

Figure 5. Comparison between LTO and HTO on codes where a speedup exists.

Acknowledgements & References

William S. Moses was supported in part by a DOE Computaঞonal Sciences Graduate Fellowship DE-SC0019323, Google
Summer of Code, NSF Grant 1533644 and 1533644, LANL grant 531711, and IBM grant W1771646. Johannes Doerfert
was supported by the Exascale Compuঞng Project (17-SC-20-SC), a collaboraঞve effort of two U.S. Department of Energy
organizaঞons (Office of Science and the Naঞonal Nuclear Security Administraঞon) responsible for the planning and prepa-
raঞon of a capable exascale ecosystem, including so[ware, applicaঞons, hardware, advanced system engineering, and early
testbed pla�orms, in support of the naঞon’s exascale compuঞng imperaঞve.

[1] J. Doerfert, H. Ueno, and S.0 Sঞpanovic: The A�ributor: A Versaঞle Inter-procedural Fixpoint Iteraঞon Framework.
US LLVM Dev Meeঞng, 2019.

[2] Johannes Doerfert, Brian Homerding, and Hal Finkel.
Performance exploraঞon through opঞmisঞc staঞc program annotaঞons.
In Internaࢼonal Conference on High Performance Compuࢼng, pages 247–268. Springer, 2019.

[3] Teresa Johnson, Mehdi Amini, and Xinliang David Li.
Thinlto: scalable and incremental lto.
In 2017 IEEE/ACM Internaࢼonal Symposium on Code Generaࢼon and Opࢼmizaࢼon (CGO), pages 111–121. IEEE, 2017.

16/16

Visit our posters and tutorial!





THE ATTRIBUTOR — EVALUATION — ASSUMING EXACT DEFINITIONS

loc. attribute # w/o A. # w/ A. A. Δ tot. w/o A. tot. w/ A.
fn. nosync 0 78491 0.0% 45.90%
arg. dereferenceable 59578 64214 +7.78% 34.8% 37.50%
fn. nofree 25649 76719 +199.11% 15.0% 44.90%
fn. willreturn 0 64748 0.0% 37.90%
arg. writeonly 0 4229 0.0% 2.47%
arg. readnone 40505 38414 -5.16% 23.7% 22.50%
fn. noreturn 879 2394 +172.36% 0.514% 1.40%
arg. align 449 1028 +128.95% 0.263% 0.60%
ret. dereferenceable 18064 19419 +7.50% 10.8% 11.60%
arg. nocapture 153523 155294 +1.15% 89.8% 90.80%
arg. returned 9418 13937 +47.98% 5.51% 8.15%
arg. noalias 4113 4189 +1.85% 2.41% 2.45%
ret. noalias 3015 3310 +9.78% 1.81% 1.98%
fn. writeonly 8089 9877 +22.10% 4.73% 5.78%
fn. nounwind 123516 125480 +1.59% 72.2% 73.40%



MUST-BE-EXECUTED-CONTEXT



MUST-BE-EXECUTED-CONTEXT



INLINING VS. IPO

The “inline-first” approach:

I: aggressive inlining, e.g., all 𝑁 call sites
II: perform intra-procedural analyses + transformations (𝑁 times)
III: derive information + transformation opportunities inter-procedurally

The “IPO-first” approach:

I: derive information + transformation opportunities inter-procedurally
II: internalize & specialize functions if necessary & beneficial
III: inline where benefit can be expected



INLINING VS. IPO

The “inline-first” approach:

I: aggressive inlining, e.g., all 𝑁 call sites
II: perform intra-procedural analyses + transformations (𝑁 times)
III: derive information + transformation opportunities inter-procedurally

The “IPO-first” approach:

I: derive information + transformation opportunities inter-procedurally
II: internalize & specialize functions if necessary & beneficial
III: inline where benefit can be expected



INLINING VS. IPO

The “inline-first” approach:

I: aggressive inlining, e.g., all 𝑁 call sites
II: perform intra-procedural analyses + transformations (𝑁 times)
III: derive information + transformation opportunities inter-procedurally

The “IPO-first” approach:

I: derive information + transformation opportunities inter-procedurally
II: internalize & specialize functions if necessary & beneficial
III: inline where benefit can be expected


	I. Background
	II. Motivation
	III. Design
	Appendix

