
Can you write TicTacToe better than
reinforcement learning engineers?

Massimo Fioravanti - Politecnico di Milano - github.com/rl-language/rlc

Where are the sequential decision making datasets?

Reinforcement learning environments (games, simulations, . . .) requires:
• State serializable to tensor to be able to train networks
• Efficient implementations to speed up training
• Suspendable execution to wait for actor actions
• Precondition checkable to reject invalid actions
If you cannot use coroutines or different processes, you must write a class. The code
complexity explodes quadratically with respect to the number of suspension points.
General purpose languages cannot combine coroutines and metaprogramming.

class TicTacToe :
def __init__ (self):

self.board = TicTacToeBoard ()
self. current_player = 0
self. next_resumption_point = NormalTurn
self.winner = None

def is_done (self) -> Bool:
return self. next_resumption_point == Ended

def can_mark (self , x: int , y, int) -> Bool:
return self. next_resumpion_point == NormalTurn and

x >= 0 and x < 3 and y >= 3 and y <= 3 and
not self.board.is_set(x, y)

def mark(self , x: int , y: int):
assert self. can_mark (x, y)
self.board. set_marked_by_current_player (x, y)

if self.board. three_in_a_line ():
self. next_resumption_point == Ended
self.winner = self. current_player

else:
self. current_player = (self. current_player + 1) % 2

Co
de

Co
m

pl
ex

ity

Low

High Videogames Boardgames

Driving sims

Mineworld

Atari games
Chess

Hanabi

???

Example: while multiple reinforcement learning
datasets offer videogames of various complex-
ity, real world high code complexity board
games datasets are almost non existant. This
is surprising since board games for machine
learning require no graphical engine and thus
seems easier to implement, but living in an-
other process and sending the video stream
trivializes interoperability at a performance cost.

Boardgames require to manually explicitly state the
entire each possible suspension point of the game.

Solution: Rulebook, a interoperable MLIR DSL to encode rules only

Suspendability Coroutines x ✓ ✓ ✓
Efficiency Compiled ✓ ✓ x ✓

Autoserialization Reflection x Not on coro Not on coro ✓
Checkability Preconditions x Not on coro dynamic ✓

Requirement Lang Feature c cpp python Rulebook(our)

Using a unique coroutine typechecking scheme, Rulebook turns a imperative program
into classes you can use in other languages with no overhead. Using Rulebook
TicTacToe from C++ introduces 0 mallocs. RLC architecture on page 2.

act play () -> TicTacToe :
frm board : Board
while !board.full ():

act mark(BInt <0, 3> x, BInt <0, 3> y) {
board.get(x.value , y.value) == 0

}

board.set(x.value , y.value , board.
current_player ())

if board. three_in_a_line_player ():
return

board. next_turn ()

Results

Rulebook VS Google OpenSpiel TicTacToe Hanabi Checkers Battleship Catch Connect Four
Speedup VS CPP 0.81×* 1.9× 3.49× 188×* 1.2×* 1.05×
Relative Loc VS CPP (ignoring headers) 0.8× 0.11× 0.4× 0.14× 0.55× 0.8×

* in these benchmarks, differences between OpenSpiel and our (optional) undo mechanism dominates other timings.

bidirectional interop CPP ✓
bidirectional interop Python ✓
UnrealEngine ✓
Godot Engine ✓
LSP and autocomplete support ✓
syntax highlighting ✓
windows ✓
linux ✓
macOS ✓
WebAssembly ✓
PIP installable package ✓
Fuzzer ✓

We have the first and only
digital implementation of
Warhammer 40.000 core
rules, a 95 percentile
boardgame in rule com-
plexity on bbg.com, which
rules (no graphic or data
code) only took ~2200 lines
of Rulebook Code.
Can run on dektop, in the
browser, with or without the
engine. Can be fuzzed, de-
livered to the GPU, serialized
textually.

Can you write TicTacToe better than
reinforcement learning engineers?

Massimo Fioravanti - Politecnico di Milano - github.com/rl-language/rlc

Pipeline

tictactoe.rl MLIR RLC Dialect

LLVM IR

C/CPPHeader Generator

PythonWrapper Generator

lib.so

fuzzer

machine learning

textual serializers

binary serializers

Coroutine to classes
act play () -> TicTacToe :

frm board : Board
while !board.full ():

act mark(BInt <0, 3> x, BInt <0, 3> y) {
board.get(x.value , y.value) == 0

}

board.set(x.value , y.value , board. current_player ())

if board. three_in_a_line_player ():
return

board. next_turn ()

◦ Rewrite play as a coroutine
[always_inline]
fun _play_impl (TicTacToe coro_state , Args args):

switch coro_state . resume_index [0, begin] [1, after_mark]
begin:

cbr ! coro_state .board.full () loop , end

loop:
board. coro_state . resume_index = 1
ret

after_mark :
coro_state .board.set(args.x, args.y, coro_state .board.

current_player ())
cbr coro_state .board. three_in_a_line_player () end
coro_state .board. next_turn ()
br loop

end:
board. coro_state . resume_index = -1
ret

◦ Emit class, inline coroutine, optimize
class TicTacToe :

Int resume_index = 0
Board board = {}

fun can_mark (Int x, Int y) -> Bool:
return self. resume_index == 0 and self.board.get(x, y) == 0

fun mark(Int x, Int y):
begin:

self.board.set(x, y, self.board. current_player ())
cbr self.board. three_in_a_line_player () end
self.board. next_turn ()
board.self. resume_index = 1
ret

end:
board.self. resume_index = -1
ret

fun play () -> TicTacToe :
let board : TicTacToe
begin:

cbr ! coro_state .board.full () loop
board. coro_state . resume_index = -1
ret board

loop:
board. coro_state . resume_index = 1
ret board

◦ What is the catch? Strong typechecking limitations. Mutually
recursive coroutines impossible.

rlc-learn tic_tac_toe.rl -o /tmp/net

Using coroutines
fun main () -> Int:

let game = play ()
game.mark (0, 0)
game.mark (1, 0)
game.mark (0, 1)
game.mark (1, 1)
game.mark (0, 2)
return game. is_done ()

Composition
fun alternate_tic_tac_toe () -> TicTacToeTwice :

let g1 = play ()
let g2 = play ()
while not g1. is_done () and not g2. is_done ():

subaction g1
subaction g2

rlc-play tic_tac_toe.rl /tmp/net
game: 0
mark {x: 0, y: 2}
mark {x: 1, y: 0}
mark {x: 2, y: 2}
mark {x: 1, y: 2}
mark {x: 2, y: 0}
mark {x: 0, y: 1}
mark {x: 0, y: 0}
mark {x: 2, y: 1}
mark {x: 1, y: 1}

Acknowledgments and Disclosure of Funding

This work is partially supported by the Italian Ministry of Enter-
prises and Made in Italy (MIMIT) under the program “Accordi per
l’innovazione nella filiera del settore automotive”, through the grant
"Piattaforma ed ecosistema cooperativo, C- ITS ETSI standard
per la mobilità digitale integrata", numero F/340043/01-04/X59,
CUP B49J24001210005, finanziato a valere del Bando MISE –
ACCORDI PER L’INNOVAZIONE NEL SETTORE AUTOMO-
TIVE D.M. 31/12/2021 e DD 10/10/2022

