
Debugging Regressions:
Interactive Differential Debugging

V I P U L C A R I A P P A , M A R T I N V A SS I L E V,

A LE X A N D E R P E N E V, V A S S I L V A S S I L E V

This project is partially supported by the National Science Foundation under award OISE-2201990

Problem

• Modern software systems are complex, with millions of

lines of code, making debugging difficult.

• Differential debugging simplifies the process by

comparing the current system to a previous version as a

baseline.

• Current debugging practice involves running two

separate debugger instances without communication

about their execution states.

Solution: Interactive Differential Debugging (idd)

IDD automates the process of filtering out irrelevant execution paths between a reference and the

regressed software system.

How does it work?

- Load two versions of the system

o Base: The version of the system we expect to be fine.

o Regressed: The version that has a regression introduced in it.

- Use LLDB/GDB to inspect both versions of the system simultaneously.

- Leverage diff-view to look at the differences between the states of both systems.

- Deduce the cause of the regression faster by ignoring common/irrelevant execution paths.

The result is a focused display of debugger states that differ between the two versions.

Architecture

• Common place for data exchange between two debuggers. Works with either

lldb or gdb.

o Using lldb python API to steer the lldb debugger.

o Similar but less powerful approach with gdb due to the limited API supporting tools.

• Git style difference viewer to easily recognize differences between two

versions.

• Organizable UI with CSS to concentrate on what matter to you.

Base Version
View

Regressed
Version View

Stack Frames

Arguments

Locals

Output diff-view

Dispatch
Common

Commands

Dispatch single
commands

Advantages

Differential Debugging is not restricted to finding

regressions in the codebase.

• Bug Localization in Regression Analysis

• Migration and Third-Party Library Updates

• Debugging Across Compiler Optimizations

Time for Demonstration

Future Work

• Improved semantic diff. E.g. Address Space Randomization (ALSR)

• Automatically halt execution at diverging stack frames

• Watchpoints for diverging variables of interest

These enhancements would reduce manual effort, accelerate bug localization,

and improve the overall user experience of IDD.

Thank You
Any Questions?

 GitHub: github.com/compiler-research/idd

 PyPI: pypi.org/project/idd

 Install via: pip install idd

	Slide 1: Debugging Regressions: Interactive Differential Debugging
	Slide 2: Problem
	Slide 3: Solution: Interactive Differential Debugging (idd)
	Slide 4: Architecture
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Advantages
	Slide 13: Time for Demonstration
	Slide 14: Future Work
	Slide 15

